LES METEORITES
MESSAGERES DE L’ESPACE
J
acques Deferne © Jacques Deferne,
5 mai 2014
Les météorites, messagères de l'espace
Quelques centaines de météorites de taille notable heurtent la Terre chaque année. Leur poids est compris entre quelques grammes et plusieurs tonnes.
De très nombreuses micrométéorites de moins de un gramme pénètrent dans notre atmosphère chaque jour. Avant même d'atteindre le sol, certaines d'entre elles se volatilisent, marquant le ciel d'une traînée lumineuse fugitive visible dans le ciel nocturne : ce sont les étoiles filantes. Selon certaines estimations, le poids de cette "poussière cosmique" qui atteint ainsi notre planète, est estimée entre cent et mille tonnes par jour. Lorsqu'on trouve une météorite, on lui attribue un nom qui correspond généralement au lieu-dit le plus proche de son point d'impact : Agen, Cañon-Diablo, Mundrabilla... L'origine céleste des météorites Les hommes de l'Antiquité avaient déjà soupçonné l'origine céleste des météorites, et de nombreux auteurs rapportent les récits de chutes de pierres (Diogène d'Appolonia, Pline l'Ancien, Plutarque). Le géologue allemand Pallas1 décrit une météorite de 680 kg trouvée en 1749 en Sibérie et qu'il ramène à Berlin en 1775. En 1794, le physicien Chladni affirme qu'il s'agit d'un corps extraterrestre, s'opposant ainsi à la croyance généralement admise qu'il s'agissait de roches transformées par la foudre. En France, jusqu'à la fin du 18e siècle, personne ne voulait admettre l'origine extraterrestre des météorites. Toutefois, à la suite de divers témoignages décrivant des chutes de pierres, on désigne une commission présidée par Lavoisier, chargée de se pencher sur ce problème. Cette commission réfute toujours l'hypothèse de l'origine extraterrestre des météorites, hypothèse qui ne serait "que le fruit de l'imagination des témoins". Le physicien genevois Marc-Auguste Pictet, (1752-1825) s'est beaucoup activé à faire reconnaî- tre l'origine cosmique des météorites et il a été un des principaux animateurs de ce débat passionné en faisant paraître régulièrement les observations et les avis des divers protagonistes de cette dispute dans la Bibliothèque Britannique2. Le débat prend fin à la suite de la chute d'une pluie de pierres qui se produisit le 26 avril 1803 à L'Aigle, dans le département de l'Orne. Le Gouvernement français ayant commandé une expertise de ce phénomène au physicien Jean-Baptiste Biot, celui-ci, dans une étude remarquable, conclut définitivement à l'origine céleste des météorites. Dans une lettre adressée le 23 juillet 1803 à M.-A. Pictet, publiée la même année dans la Bibliothèque Britannique, Biot écrit: "C'est à vous et à vos estimables collaborateurs que nous devons la connaissance des travaux de Chladni et des chimistes anglais sur les masses météoriques. C'est vous qui, le premier, à l'Institut National, avez élevé cette grande question, et depuis vous n'avez cessé de recueillir les faits ou les conjectures qui pouvaient servir à la décider. Vous avez acquis par là une sorte de droit sur les observations nouvelles, et je m'empresse de le reconnaître en vous adressant une copie de la lettre que je viens d'écrire au Ministre de l'intérieur sur le météore observé aux environs de L'Aigle, le 6 floréal an XI. Si la justice me fait un devoir de vous rendre cet hommage, l'amitié m'en fait un plaisir". Jacques Deferne 2 1 La météorite découverte par Pallas est un type peu fréquent de météorite mixte qu'on appelle aujourd'hui "pallasite". 2 Revue scientifique publiée à Genève dès 1796, par M.A. Pictet et divers collaborateurs. Quelle est leur composition ? On observe trois types de météorites : 1. les météorites pierreuses constituées par des minéraux identiques à ceux qu'on rencontre dans certaines roches terrestres, souvent accompagnés de grains métalliques dispersés entre les minéraux, 2. les météorites métalliques faites presque exclusivement d'un alliage de fer et de nickel, 3. les météorites mixtes dans la composition desquelles le ferro-nickel et les minéraux silicatés entrent à peu près à parts égales. Météorite pierreuse Météorite métallique Météorite mixte (ces météorites sont toutes exposées au Muséum de Genève) Les statistiques établies sur les chutes observées montrent que les météorites pierreuses sont les plus nombreuses et qu'elles sont généralement de petite taille, tandis que les météorites métalliques, beaucoup moins fréquentes, sont souvent de grande taille. Les météorites mixtes sont beaucoup plus rares. Il faut noter toutefois qu'on a trouvé un grand nombre de météorites dont personne n'a observé la chute. Ce sont presque toutes des météorites métalliques car on les distingue facilement des roches qui les entourent alors qu'on ne retrouve que rarement des météorites pierreuses qui ressemblent trop aux roches terrestres parmi lesquelles elles passent souvent inaperçues. Comparaison entre le nombre de chutes observées (fréquence) et le poids total des fragments récupérés fréquence poids météorites pierreuses météorites métalliques météorites mixtes 95.6 % 3.2 1.2 33.7 % 64.7 1.6 Renferment-elles des minéraux inconnus sur Terre ? La grande majorité des minéraux qu'on trouve dans les météorites existent aussi dans les roches terrestres. Les météorites pierreuses sont constituées principalement d'olivine, de pyroxènes et de plagioclases. Par contre, les météorites métalliques se distinguent des roches terrestres par la pré- sence de fer cristallisé allié à un peu de nickel, sous deux formes possibles : la kamacite et la taenite, toutes deux cristallisant dans le système cubique, mais avec des structures différentes. La forme kamacite existe lorsque la teneur en nickel est inférieure à 7.5 %, la taenite lorsque cette proporLes météorites, messagères de l'espace 3 tion dépasse 20 %. Les météorites métalliques renferment en inclusion d'autres minéraux, parmi lesquels les plus fréquents sont la troïlite, un sulfure de fer, la cohenite, un carbure de fer, la schreibersite, un phosphure de fer et de nickel et le graphite (carbone). Trace de l'entrée d'une météorites dans l'atmosphère au cours de la nuit. Principaux minéraux des météorites Péridots Sulfures : olivine (Mg,Fe)2SiO4 troïlite FeS Pyroxènes : pentlandite (Fe,Ni)9S8 enstatite MgSiO3 daubréelite FeCr2S4 ferrosillite FeSiO3 oldhamite (Ca,Mg)S diopside CaMgSi2O6 Oxydes : hédenbergite CaFeSi2O6 chromite FeCr2O4 pigeonite (Mg,Fe,Ca)2Si2O6 magnétite FeFeO4 Feldspaths : ilménite FeTiO3 plagioclases (Na,Ca)(Al,Si)4O8 spinelle MgAl2O4 orthose KAlSi3O8 Divers : Ferronickel : apatite Ca5(PO4)3Cl kamacite Fe (Ni<7 .5="" ca3="" fe="" i="" taenite="" whitlockite="">20%) schreibersite (Fe,Ni)3 P tétrataenite FeNi (Ni >50%) cohenite (Fe,Ni)3 C Minéraux argileux : osbornite TiN serpentine (Mg,Fe)3Si2O5(OH)4 perryite Ni3Si cronstedite Fe4SiO5(OH)4 graphite C D'où viennent-elles ? Elles proviennent de l'intérieur du système solaire. A partir de nombreuses observations photographiques on a pu reconstituer les orbites de quelques unes d'entre elles avant leur entrée dans l'atmosphère. On a pu établir ainsi qu'elles suivent des orbites elliptiques excentriques dont la partie la plus éloignée du Soleil, l’aphélie, se situe entre Mars et Jupiter, dans la région dite des Astéroïdes. Rappelons que les astéroïdes sont constitués par des myriades de fragments rocheux de toutes tailles (les plus gros atteignent 1000 km de diamètre) qui gravitent le long d'orbites très excentriques entre les planètes Mars et Jupiter. Ces astéroïdes n'ont jamais réussi à s'agglomérer en une planète unique, probablement à cause des perturbations gravifiques engendrées par le voisinage de la masse énorme de la planète Jupiter. Trace du passage d’une météorite dans le ciel nocturne Jacques Deferne 4 Reconstitution des orbites des météorites, Pribram et Lost-City, avant leur rencontre avec la Terre. La partie haute de ces orbites, l'aphélie, se situe entre Mars et Jupiter, dans la zone des Astéroïdes Quelques rares météorites sont d'origine lunaire ou proviennent de la surface de Mars d'où elles ont été vraisemblablement expulsées par l'impact de grosses météorites. Quelques rares chondrites semblent avoir une origine cométaire. Quel âge ont-elles ? Elles sont toutes très âgées. Elles se sont formées il y a quatre milliards et demi d'années, en même temps que le système solaire. Aussi l'étude des météorites contribue à la connaissance de la composition primitive de notre système solaire et nous aide à comprendre comment le soleil et son cortège des planètes se sont formés. Les météorites pierreuses Elles sont constituées, pour leur plus grande part, de minéraux identiques à ceux qu'on rencontre dans certaines roches terrestres. Toutefois, leur structure est différente et la plupart d'entre elles renferment des chondres, sphérules de 0.1 à quelques mm de diamètre, constituées de minéraux silicatés riches en fer et en magnésium. Pour cette raison on les appelle chondrites. Cette structure en sphérules est totalement inconnue dans les roches terrestres. Les météorites, messagères de l'espace 5 A l'exception de l'hélium et de l'hydrogène, la proportion des éléments chimiques que renferment les chondrites montre une grande analogie avec celle de la couronne solaire. Par ailleurs les chondrites sont les objets les plus anciens du système solaire. Elles se sont formées il y a 4,55 milliards d'années et sont contemporaines du début de la formation du Soleil et des planètes. La plupart des spécialistes estiment que certains composants des chondrites sont les "grains" de la poussière primitive qui, associée à un gigantesque nuage de gaz, ont donné naissance au système solaire. Les météorites métalliques (ou sidérites) Ce sont des masses de fer cristallisé allié à un peu de nickel, renfermant divers minéraux en inclusion, principalement des sulfures, des carbures, des phosphures de fer, du graphite et parfois des silicates. Sciées, polies, puis attaquées à l'acide, certaines météorites, constituées surtout de kamacite et de taenite, laissent apparaître un réseau de bandes entrecroisées, les "figures de Widmanstätten". On les nomme alors octaédrites, car ces bandes sont en réalité des lamelles qui se développent parallèlement aux faces d’un octaèdre. La largeur des bandes diminue avec l'augmentation de la teneur en nickel. Si la teneur en nickel est élevée (20 à 30 %), elles disparaissent et on les appelle alors ataxites. Par opposition, on appelle hexahédrites celles qui sont pauvres en nickel. Elles ne présentent pas de figures de Widmanstätten et sont composées uniquement de kamacite formant de grands cristaux cubiques (hexaèdres). Certaines météorites sont même constituées d'un seul cristal. Gibeon, Namibie, une octaédrite Chondrite, Kohar (Inde) Chondrite vue au microscope Jacques Deferne 6 Ainsi la météorite Agpalilik découverte au Groenland et pesant plus de vingt tonnes, s'est révélée être une partie d'un seul et même cristal. La météorite métallique "Agpalilik" découverte au Cape-York, au Groenland pèse plus de 20 tonnes. Elle est l'un des fragment d'une météorite de près de 60 tonnes tombée dans la région il y a environ 10'000 ans. Les météorites métalliques sont généralement plus jeunes que les météorites pierreuses d'une centaine de millions d'années. Leur origine doit être recherchée dans la fusion partielle des chondrites, qui a produit la séparation du fer des autres constituants. Ce processus a dû se produire très tôt au sein des protoplanètes en formation. Les météorites mixtes Elles sont constituées de parts à peu près égales de métal et de minéraux silicatés. Les plus spectaculaires sont les pallasites qui montrent des monocristaux d'olivine noyés dans le métal. On pense qu'elles proviennent de l'interface noyau/manteau à l'intérieur de protoplanètes parentales. Pallasite, Imilac, Chili Les météorites sont des composants des planètes intérieures On constate une analogie entre les météorites pierreuses et les roches qui composent le manteau terrestre. De même, de nombreux indices montrent que le noyau terrestre possède la même composition que celle des météorites métalliques. Les pallasites, beaucoup plus rares, représenteraient l'aspect qui doit exister au niveau de la zone de transition entre le noyau terrestre et le manteau. Les météorites nous apportent donc de précieux renseignements sur la composition interne des planètes intérieures. _____________________ Les météorites, messagères de l'espace 7 Les phénomènes qui accompagnent leur chute La traversée de l'atmosphère Les météorites abordent la haute atmosphère à des vitesses comprises entre 12 et 70 km par seconde. Leur vitesse dépend de l'orientation de leur orbite par rapport à celle de la Terre. Leur entrée dans l'atmosphère provoque un échauffement considérable qui volatilise la partie externe de la mé- téorite à raison d'un demi-centimètre par seconde environ et provoque à sa surface l'apparition d'une croûte de fusion de quelques millimètres d'épaisseur. Sur les grosses météorites métalliques, le frottement de l’air en tourbillons occasionne la formation de dépressions concaves, les regmaglypts, qui recouvrent toute leur surface. La luminosité qui signale le passage d'un météore1 dans l'atmosphère peut être très intense. Les té- moins parlent de "boule de feu" dont la luminosité est comparable à celle du Soleil. Quant au bruit qui accompagne le météore, certains témoins parlent d'un bruit analogue à celui d'un train qui passe. D'autres parlent de chuintement et de sifflement. L'origine de ce bruit est probablement lié à l'ionisation intense de l'air le long du cheminement du bolide. Une trace de fumée due à la condensation des parties volatilisées peut persister plusieurs dizaines de minutes après le passage du mé- téore. Le freinage dû à l'atmosphère Le freinage d'une météorite dépend de sa surface. Si la masse d’une météorite est proportionnelle au cube de son rayon, sa surface n’est que proportionnelle au carré de son rayon. Comme l'énergie renfermée par une météorite est proportionnelle à sa masse. On comprend pourquoi les petites météorites sont rapidement ralenties par le frottement de l'atmosphère alors que les mé- téorites de grande taille ne sont que peu ou pas freinées. Les étoiles filantes Ce sont de très petites météorites de quelques centimètres dont l'échauffement produit lors de leur entrée dans l'atmosphère provoque dans le ciel une lueur fugace qui ne dure que pendant le temps de leur combustion. Henbury, Ausralie, météorite recouverte de remaglypts Jacques Deferne 8 1 Le terme "météore" est réservé aux aspects du phénomène atmosphérique par opposition à "météorite" qui désigne l'objet. Passage d’un météore en plein jour au-dessus du Lac Jackson, Wyoming, USA, en août 1972. Les cratères d'impact L'énergie que renferme une météorite est égale à la moitié de sa masse multipliée par le carré de la vitesse : e = mv2 2 Les météorites de très grande taille possèdent donc une énergie colossale à cause de leur vitesse qui, rappelons, peut peut atteindre jusqu’à 70 km par seconde. Au moment de leur chute, elles dissipent instantanément cette énergie, provoquant une gigantesque explosion qui volatilise la météorite, et forme un cratère. Une partie des roches est volatilisée ou pulvérisée, alors que d'autres parties sont partiellement fondues et disloquées. Les très nombreux cratères qu'on observe sur la Lune, sur Mercure ainsi que sur la plupart des astres du système solaire ont été causés par des météorites. La Terre a été également affectée par le bombardement de météorites, mais peu de cratères ont été conservés, car, très rapidement, ils sont effacés par l'érosion. Seuls ceux qui se sont formés ré- cemment sont encore visibles. Le plus connu d'entre eux est le Meteor Crater en Arizona. Il a été provoqué par la chute d'une météorite géante il y a environ 50’000 ans. Le poids de cette météorite a été estimé à 100’000 tonnes et son diamètre à 25 mètres. Les météorites, messagères de l'espace 9 Meteor Crater, Arizona ∅ 1200 m. Tenoumer, Mauritanie, ∅ 1800 m. La vitesse d'arrivée au sol a été estimée à 15 kilomètres par seconde. L'énorme énergie dissipée au moment de l'impact a été l'équivalent de 2 mégatonnes de TNT, soit 150 fois la puissance de la bombe atomique d'Hiroshima. Sous l'effet du choc, la météorite a explosé et s'est volatilisée. Seuls des fragments arrachés au corps principal au moment de l'entrée dans l'atmosphère ont été suffisamment ralentis pour ne pas exploser. On en a récolté une trentaine de tonnes aux alentours du cratère, le plus gros d'entre eux atteignant 639 kg. Il s'agit d'une météorite métallique qui a été baptisée "Cañon-Diablo", du nom d'une rivière proche du cratère. Cratère de Manicouagang Canada, D’un diamètre de 80 km, il s’est formé il y a 214 millions d’années. Les spécialistes estiment qu’il a été provoqué par la chute d’une météorite de 5 km de diamètre. Jacques Deferne 10 Existe-t-il un danger de recevoir une météorite ? On estime à 500 le nombre de météorites de taille notable qui tombent chaque année sur la terre. La surface de notre planète étant d'environ 500 millions de km2, la probabilité qu'une ville de 250’000 habitants (surf. ≈10 km2) reçoive une météorite est de une fois tous les 100’000 ans. Pour une maison particulière de 200 m2, un tel événement ne se produirait qu'une fois tous les 5 milliards d'années. Quant à un homme de 0.5 m2, cette probabilité n'est que d'une fois pour 2000 milliards d'années environ ! Toutefois, avec une population de 7 milliards d'habitants, la probabilité qu'un habitant de la Terre soit frappé par une météorite est tout de même d'une fois tous les quatre siècles ! Une chute bien étudiée : la météorite de Sikhote-Alin Le 12 février 1947, un météore dont la brillance surpassait celle du soleil traversait le ciel de la Sibérie orientale, laissant derrière lui une traînée de fumée visible encore plusieurs heures après son passage. Le phénomène lumineux ainsi que le grondement qui l'accompagnait furent perçus dans un rayon de plus de 300 kilomètres. A 10 h. 38, la météorite qui était la cause de ce phénomène se fragmente à environ 6 km d'altitude et ses débris s'écrasent aux alentours de Sikhote-Alin, formant de nombreux cratères dont le plus grand atteignait 26 mètres de diamètre. Près de 23 tonnes de fragments ont été récoltés dont le plus gros atteignait 1745 kg. Il s'agit d'une météorite métallique composée de fer avec environ 6 % de nickel. Les nombreux témoignages recueillis ainsi que les diverses photographies qui ont été prises, ont permis aux scientifiques d'affirmer : 1. que la météorite devait peser près de 1000 tonnes avant son entrée dans l'atmosphère, 2. qu'elle a abordé l'atmosphère à une vitesse de 14.5 km par seconde avec un angle d'incidence de 41°, 3. qu'elle possédait une orbite extra-terrestre correspondant à celles qui caractérisent les objets appartenant à la ceinture des astéroïdes. Sikhote-Alin, Sibérie, tombée le 12 février 1947 Les météorites, messagères de l'espace 11 Une chute historique : la météorite d'Ensisheim Discrète dans la plaine d'Alsace, la petite bourgade d'Ensisheim coule des jours paisibles à midistance entre Bâle et Colmar, un peu à l'écart du trafic autoroutier. Il y a un peu plus de cinq cents ans, en 1492, alors qu'à des milliers de kilomètres de là, Christophe Colomb foulait depuis quelques jours les rivages de l'Amérique, un événement extraordinaire et incompréhensible secouait la torpeur des habitants d'Ensisheim. Le 7 novembre, entre 11 heures et midi, un vacarme intense ressemblant à un immense coup de tonnerre fit sursauter tous les habitants de la région et une grosse pierre (env. 127 kg) s'abattit dans un champs de blé au voisinage de la bourgade. Les circonstances de la chute sont bien connues grâce à de nombreux témoignages qui ont été fort heureusement conservés jusqu'à aujourd'hui. Les chroniques nous apprennent même que le grondement dû au passage de la météorite avait sérieusement alerté les habitants de la ville de Lucerne, et que dans beaucoup d'autres endroits le fracas avait été si important qu'on avait cru que des maisons avaient été renversées. Elles rapportent aussi que le roi Maximilien, de passage à Ensisheim le lundi 26 novembre, se fit apporter la pierre à son château, en prit deux morceaux dont il en garda un et fit envoyer l'autre au Duc Sigismond d'Autriche. Enfin il ordonna aux gens d'Ensisheim de la suspendre dans l'église et défendit qu'on en prélevât d'autres fragments. La météorite a été parfaitement conservée et on peut la voir aujourd'hui au musée d'Ensisheim. Il s'agit d'une chondrite composée essentiellement d'olivine et de pyroxènes, minéraux ferro-magnésiens qu'on trouve aussi en abondance dans les roches terrestres. C'est la plus ancienne météorite conservée en Europe. Enluminure tirée des Chroniques lucernoises de Diebold Schilling, relatant la chute de la météorite d’Ensisheim. Les tectites Ce sont des fragments de verre fondu ressemblant à de l'obsidienne, distribués en vastes essaims dans diverses régions de notre planète. Certains savants pensent que les tectites sont constituées de matériel terrestre vitrifié par l'impact d'une météorite géante et projeté - comme des "giclures"- à des centaines de kilomètres de leur point de départ. Météorite d’Ensisheim dans sa vitrine à l’Hôtel de Ville Jacques Deferne 12 Les formes particulières qui les caractérisent, larmes, boutons, poires, ainsi que les cupules qui recouvrent leur surface sont dues à l'échauffement qu'elles ont subi en traversant l'atmosphère à très haute vitesse. Elles portent des noms qui indiquent la région où elles ont été récoltées: moldavites, indochinites, ivoirites, australites, bédiasites... Les quatre champs de tectites connus sont différents par l'étendue de leur aire de répartition et par l'âge de leur chute. Pour deux d'entre eux le cratère d'origine a pu être identifié. Le cratère du Ries, près de Nordlingen, en Allemagne, est à l'origine des moldavites de Bohème et de Moldavie, le cratère de Bosumtwi, au Ghana, serait à l'origine des tectites qu'on trouve en Côte d'Ivoire. Indochinites Moldavite Les champs de tectites dans le monde Groupe Aire géographique Nom Epoque de la chute Age (m.a..) Australie Australie du Sud Indochine Malaisie Philippines Indonésie Australites Indochinites Pleistocène tardif 0.7 Afrique de l'Ouest Côte d'Ivoire Ivoirites Pléistocène 1.3 Europe Tchécoslovaquie Moldavites Miocène 15 Amérique du Nord Texas, Géorgie Bédiasites Oligocène 34 Les météorites, messagères de l'espace 13 Glossaire Aérolithe Ancien nom des météorites pierreuses. Astéroïdes La ceinture des Astéroïdes est constituée de centaines de milliers de fragments rocheux qui gravitent sur des ellipses excentriques dont la partie haute (apogée) se situe entre Mars et Jupiter. Les plus gros peuvent atteindre plusieurs centaines de km de diamètre. Ataxite Météorite métallique dépourvue de toute structure. Bolide Terme général qui décrit une météorite qui parvient au voisinage de la terre sans être volatilisée. Chondre Petites sphérules constituées de minéraux silicatés présentes dans les chondrites. Chondrite Météorite pierreuse renfermant des chondres. Cohenite Carbure de fer et de nickel (Fe,Ni)3C. Etoile filante Phénomène lumineux provoqué par des micrométéorites qui sont entièrement volatilisées en entrant dans l'atmosphère. Hexahédrite Météorite métallique pauvre en nickel, constituée de kamacite et ne présentant pas de figures de Widmanstätten. On aperçoit parfois les formes cubiques (hexaèdres) de la kamacite. Kamacite Fer à faible teneur en nickel, cristallisant dans le système cubique (structure centrée). Météore Ensemble des phénomènes lumineux et sonores qui résultent de l'entrée d'une météorite dans l'atmosphère. Météorite Fragment d'un corps céleste qui tombe sur la Terre. Octaédrite météorite métallique caractérisée par des exsolutions de lamelles de kamacite dans la taenite qui se disposent parallèlement aux faces d'un octaèdre. Olivine Silicate de fer et de magnésium (Mg,Fe)2SiO4. Pallasite Météorite constituée de parts à peu près égales de cristaux d'olivine noyés dans du ferro-nickel. Plagioclase Série de feldspaths calco-sodiques pouvant cristalliser en toutes proportions entre les termes extrêmes NaAlSi3O8 et CaAl2Si2O8. Protoplanète Planète hypothétique dans son stade de formation. Pyroxène Famille de silicates ferro-magnésiens, dont les représentants plus fréquents dans les météorites, sont l'enstatite, Mg2Si2O6, la bronzite (Mg,Fe)2Si2O6 et l'hypersthène (Fe,Mg)2Si2O6. Regmaglypts Dépressions concaves qui recouvrent les météorites métalliques, provoquées par les turbulences du frottement de l'air. Schreibersite Minéral qu'on trouve dans les météorites métalliques. C'est un phosphure de fer (Fe,Ni)3P. Sidérite Terme scientifique désignant les météorites métalliques. Sidérolite Ancien terme désignant les météorites mixtes. Taenite Fer à teneur élevée en nickel (Ni>25%), cristallisant dans le système cubique. Tectite Objets vitreux présentant des formes singulières, qu'on peut récolter dans diverses régions du globe et qui sont des sortes de "giclures" provoquées par la chute de météorites géantes. Troïlite Sulfure de fer (FeS) cristallisant dans le système hexagonal et présent dans les météorites métalliques. Widmanstätten Nom du savant qui a décrit le premier les structures lamellaires qui apparaissent dans beaucoup de météorites métalliques et auxquelles il a prêté son nom (figures de Widmanstätten).7>
acques Deferne © Jacques Deferne,
5 mai 2014
Les météorites, messagères de l'espace
Quelques centaines de météorites de taille notable heurtent la Terre chaque année. Leur poids est compris entre quelques grammes et plusieurs tonnes.
De très nombreuses micrométéorites de moins de un gramme pénètrent dans notre atmosphère chaque jour. Avant même d'atteindre le sol, certaines d'entre elles se volatilisent, marquant le ciel d'une traînée lumineuse fugitive visible dans le ciel nocturne : ce sont les étoiles filantes. Selon certaines estimations, le poids de cette "poussière cosmique" qui atteint ainsi notre planète, est estimée entre cent et mille tonnes par jour. Lorsqu'on trouve une météorite, on lui attribue un nom qui correspond généralement au lieu-dit le plus proche de son point d'impact : Agen, Cañon-Diablo, Mundrabilla... L'origine céleste des météorites Les hommes de l'Antiquité avaient déjà soupçonné l'origine céleste des météorites, et de nombreux auteurs rapportent les récits de chutes de pierres (Diogène d'Appolonia, Pline l'Ancien, Plutarque). Le géologue allemand Pallas1 décrit une météorite de 680 kg trouvée en 1749 en Sibérie et qu'il ramène à Berlin en 1775. En 1794, le physicien Chladni affirme qu'il s'agit d'un corps extraterrestre, s'opposant ainsi à la croyance généralement admise qu'il s'agissait de roches transformées par la foudre. En France, jusqu'à la fin du 18e siècle, personne ne voulait admettre l'origine extraterrestre des météorites. Toutefois, à la suite de divers témoignages décrivant des chutes de pierres, on désigne une commission présidée par Lavoisier, chargée de se pencher sur ce problème. Cette commission réfute toujours l'hypothèse de l'origine extraterrestre des météorites, hypothèse qui ne serait "que le fruit de l'imagination des témoins". Le physicien genevois Marc-Auguste Pictet, (1752-1825) s'est beaucoup activé à faire reconnaî- tre l'origine cosmique des météorites et il a été un des principaux animateurs de ce débat passionné en faisant paraître régulièrement les observations et les avis des divers protagonistes de cette dispute dans la Bibliothèque Britannique2. Le débat prend fin à la suite de la chute d'une pluie de pierres qui se produisit le 26 avril 1803 à L'Aigle, dans le département de l'Orne. Le Gouvernement français ayant commandé une expertise de ce phénomène au physicien Jean-Baptiste Biot, celui-ci, dans une étude remarquable, conclut définitivement à l'origine céleste des météorites. Dans une lettre adressée le 23 juillet 1803 à M.-A. Pictet, publiée la même année dans la Bibliothèque Britannique, Biot écrit: "C'est à vous et à vos estimables collaborateurs que nous devons la connaissance des travaux de Chladni et des chimistes anglais sur les masses météoriques. C'est vous qui, le premier, à l'Institut National, avez élevé cette grande question, et depuis vous n'avez cessé de recueillir les faits ou les conjectures qui pouvaient servir à la décider. Vous avez acquis par là une sorte de droit sur les observations nouvelles, et je m'empresse de le reconnaître en vous adressant une copie de la lettre que je viens d'écrire au Ministre de l'intérieur sur le météore observé aux environs de L'Aigle, le 6 floréal an XI. Si la justice me fait un devoir de vous rendre cet hommage, l'amitié m'en fait un plaisir". Jacques Deferne 2 1 La météorite découverte par Pallas est un type peu fréquent de météorite mixte qu'on appelle aujourd'hui "pallasite". 2 Revue scientifique publiée à Genève dès 1796, par M.A. Pictet et divers collaborateurs. Quelle est leur composition ? On observe trois types de météorites : 1. les météorites pierreuses constituées par des minéraux identiques à ceux qu'on rencontre dans certaines roches terrestres, souvent accompagnés de grains métalliques dispersés entre les minéraux, 2. les météorites métalliques faites presque exclusivement d'un alliage de fer et de nickel, 3. les météorites mixtes dans la composition desquelles le ferro-nickel et les minéraux silicatés entrent à peu près à parts égales. Météorite pierreuse Météorite métallique Météorite mixte (ces météorites sont toutes exposées au Muséum de Genève) Les statistiques établies sur les chutes observées montrent que les météorites pierreuses sont les plus nombreuses et qu'elles sont généralement de petite taille, tandis que les météorites métalliques, beaucoup moins fréquentes, sont souvent de grande taille. Les météorites mixtes sont beaucoup plus rares. Il faut noter toutefois qu'on a trouvé un grand nombre de météorites dont personne n'a observé la chute. Ce sont presque toutes des météorites métalliques car on les distingue facilement des roches qui les entourent alors qu'on ne retrouve que rarement des météorites pierreuses qui ressemblent trop aux roches terrestres parmi lesquelles elles passent souvent inaperçues. Comparaison entre le nombre de chutes observées (fréquence) et le poids total des fragments récupérés fréquence poids météorites pierreuses météorites métalliques météorites mixtes 95.6 % 3.2 1.2 33.7 % 64.7 1.6 Renferment-elles des minéraux inconnus sur Terre ? La grande majorité des minéraux qu'on trouve dans les météorites existent aussi dans les roches terrestres. Les météorites pierreuses sont constituées principalement d'olivine, de pyroxènes et de plagioclases. Par contre, les météorites métalliques se distinguent des roches terrestres par la pré- sence de fer cristallisé allié à un peu de nickel, sous deux formes possibles : la kamacite et la taenite, toutes deux cristallisant dans le système cubique, mais avec des structures différentes. La forme kamacite existe lorsque la teneur en nickel est inférieure à 7.5 %, la taenite lorsque cette proporLes météorites, messagères de l'espace 3 tion dépasse 20 %. Les météorites métalliques renferment en inclusion d'autres minéraux, parmi lesquels les plus fréquents sont la troïlite, un sulfure de fer, la cohenite, un carbure de fer, la schreibersite, un phosphure de fer et de nickel et le graphite (carbone). Trace de l'entrée d'une météorites dans l'atmosphère au cours de la nuit. Principaux minéraux des météorites Péridots Sulfures : olivine (Mg,Fe)2SiO4 troïlite FeS Pyroxènes : pentlandite (Fe,Ni)9S8 enstatite MgSiO3 daubréelite FeCr2S4 ferrosillite FeSiO3 oldhamite (Ca,Mg)S diopside CaMgSi2O6 Oxydes : hédenbergite CaFeSi2O6 chromite FeCr2O4 pigeonite (Mg,Fe,Ca)2Si2O6 magnétite FeFeO4 Feldspaths : ilménite FeTiO3 plagioclases (Na,Ca)(Al,Si)4O8 spinelle MgAl2O4 orthose KAlSi3O8 Divers : Ferronickel : apatite Ca5(PO4)3Cl kamacite Fe (Ni<7 .5="" ca3="" fe="" i="" taenite="" whitlockite="">20%) schreibersite (Fe,Ni)3 P tétrataenite FeNi (Ni >50%) cohenite (Fe,Ni)3 C Minéraux argileux : osbornite TiN serpentine (Mg,Fe)3Si2O5(OH)4 perryite Ni3Si cronstedite Fe4SiO5(OH)4 graphite C D'où viennent-elles ? Elles proviennent de l'intérieur du système solaire. A partir de nombreuses observations photographiques on a pu reconstituer les orbites de quelques unes d'entre elles avant leur entrée dans l'atmosphère. On a pu établir ainsi qu'elles suivent des orbites elliptiques excentriques dont la partie la plus éloignée du Soleil, l’aphélie, se situe entre Mars et Jupiter, dans la région dite des Astéroïdes. Rappelons que les astéroïdes sont constitués par des myriades de fragments rocheux de toutes tailles (les plus gros atteignent 1000 km de diamètre) qui gravitent le long d'orbites très excentriques entre les planètes Mars et Jupiter. Ces astéroïdes n'ont jamais réussi à s'agglomérer en une planète unique, probablement à cause des perturbations gravifiques engendrées par le voisinage de la masse énorme de la planète Jupiter. Trace du passage d’une météorite dans le ciel nocturne Jacques Deferne 4 Reconstitution des orbites des météorites, Pribram et Lost-City, avant leur rencontre avec la Terre. La partie haute de ces orbites, l'aphélie, se situe entre Mars et Jupiter, dans la zone des Astéroïdes Quelques rares météorites sont d'origine lunaire ou proviennent de la surface de Mars d'où elles ont été vraisemblablement expulsées par l'impact de grosses météorites. Quelques rares chondrites semblent avoir une origine cométaire. Quel âge ont-elles ? Elles sont toutes très âgées. Elles se sont formées il y a quatre milliards et demi d'années, en même temps que le système solaire. Aussi l'étude des météorites contribue à la connaissance de la composition primitive de notre système solaire et nous aide à comprendre comment le soleil et son cortège des planètes se sont formés. Les météorites pierreuses Elles sont constituées, pour leur plus grande part, de minéraux identiques à ceux qu'on rencontre dans certaines roches terrestres. Toutefois, leur structure est différente et la plupart d'entre elles renferment des chondres, sphérules de 0.1 à quelques mm de diamètre, constituées de minéraux silicatés riches en fer et en magnésium. Pour cette raison on les appelle chondrites. Cette structure en sphérules est totalement inconnue dans les roches terrestres. Les météorites, messagères de l'espace 5 A l'exception de l'hélium et de l'hydrogène, la proportion des éléments chimiques que renferment les chondrites montre une grande analogie avec celle de la couronne solaire. Par ailleurs les chondrites sont les objets les plus anciens du système solaire. Elles se sont formées il y a 4,55 milliards d'années et sont contemporaines du début de la formation du Soleil et des planètes. La plupart des spécialistes estiment que certains composants des chondrites sont les "grains" de la poussière primitive qui, associée à un gigantesque nuage de gaz, ont donné naissance au système solaire. Les météorites métalliques (ou sidérites) Ce sont des masses de fer cristallisé allié à un peu de nickel, renfermant divers minéraux en inclusion, principalement des sulfures, des carbures, des phosphures de fer, du graphite et parfois des silicates. Sciées, polies, puis attaquées à l'acide, certaines météorites, constituées surtout de kamacite et de taenite, laissent apparaître un réseau de bandes entrecroisées, les "figures de Widmanstätten". On les nomme alors octaédrites, car ces bandes sont en réalité des lamelles qui se développent parallèlement aux faces d’un octaèdre. La largeur des bandes diminue avec l'augmentation de la teneur en nickel. Si la teneur en nickel est élevée (20 à 30 %), elles disparaissent et on les appelle alors ataxites. Par opposition, on appelle hexahédrites celles qui sont pauvres en nickel. Elles ne présentent pas de figures de Widmanstätten et sont composées uniquement de kamacite formant de grands cristaux cubiques (hexaèdres). Certaines météorites sont même constituées d'un seul cristal. Gibeon, Namibie, une octaédrite Chondrite, Kohar (Inde) Chondrite vue au microscope Jacques Deferne 6 Ainsi la météorite Agpalilik découverte au Groenland et pesant plus de vingt tonnes, s'est révélée être une partie d'un seul et même cristal. La météorite métallique "Agpalilik" découverte au Cape-York, au Groenland pèse plus de 20 tonnes. Elle est l'un des fragment d'une météorite de près de 60 tonnes tombée dans la région il y a environ 10'000 ans. Les météorites métalliques sont généralement plus jeunes que les météorites pierreuses d'une centaine de millions d'années. Leur origine doit être recherchée dans la fusion partielle des chondrites, qui a produit la séparation du fer des autres constituants. Ce processus a dû se produire très tôt au sein des protoplanètes en formation. Les météorites mixtes Elles sont constituées de parts à peu près égales de métal et de minéraux silicatés. Les plus spectaculaires sont les pallasites qui montrent des monocristaux d'olivine noyés dans le métal. On pense qu'elles proviennent de l'interface noyau/manteau à l'intérieur de protoplanètes parentales. Pallasite, Imilac, Chili Les météorites sont des composants des planètes intérieures On constate une analogie entre les météorites pierreuses et les roches qui composent le manteau terrestre. De même, de nombreux indices montrent que le noyau terrestre possède la même composition que celle des météorites métalliques. Les pallasites, beaucoup plus rares, représenteraient l'aspect qui doit exister au niveau de la zone de transition entre le noyau terrestre et le manteau. Les météorites nous apportent donc de précieux renseignements sur la composition interne des planètes intérieures. _____________________ Les météorites, messagères de l'espace 7 Les phénomènes qui accompagnent leur chute La traversée de l'atmosphère Les météorites abordent la haute atmosphère à des vitesses comprises entre 12 et 70 km par seconde. Leur vitesse dépend de l'orientation de leur orbite par rapport à celle de la Terre. Leur entrée dans l'atmosphère provoque un échauffement considérable qui volatilise la partie externe de la mé- téorite à raison d'un demi-centimètre par seconde environ et provoque à sa surface l'apparition d'une croûte de fusion de quelques millimètres d'épaisseur. Sur les grosses météorites métalliques, le frottement de l’air en tourbillons occasionne la formation de dépressions concaves, les regmaglypts, qui recouvrent toute leur surface. La luminosité qui signale le passage d'un météore1 dans l'atmosphère peut être très intense. Les té- moins parlent de "boule de feu" dont la luminosité est comparable à celle du Soleil. Quant au bruit qui accompagne le météore, certains témoins parlent d'un bruit analogue à celui d'un train qui passe. D'autres parlent de chuintement et de sifflement. L'origine de ce bruit est probablement lié à l'ionisation intense de l'air le long du cheminement du bolide. Une trace de fumée due à la condensation des parties volatilisées peut persister plusieurs dizaines de minutes après le passage du mé- téore. Le freinage dû à l'atmosphère Le freinage d'une météorite dépend de sa surface. Si la masse d’une météorite est proportionnelle au cube de son rayon, sa surface n’est que proportionnelle au carré de son rayon. Comme l'énergie renfermée par une météorite est proportionnelle à sa masse. On comprend pourquoi les petites météorites sont rapidement ralenties par le frottement de l'atmosphère alors que les mé- téorites de grande taille ne sont que peu ou pas freinées. Les étoiles filantes Ce sont de très petites météorites de quelques centimètres dont l'échauffement produit lors de leur entrée dans l'atmosphère provoque dans le ciel une lueur fugace qui ne dure que pendant le temps de leur combustion. Henbury, Ausralie, météorite recouverte de remaglypts Jacques Deferne 8 1 Le terme "météore" est réservé aux aspects du phénomène atmosphérique par opposition à "météorite" qui désigne l'objet. Passage d’un météore en plein jour au-dessus du Lac Jackson, Wyoming, USA, en août 1972. Les cratères d'impact L'énergie que renferme une météorite est égale à la moitié de sa masse multipliée par le carré de la vitesse : e = mv2 2 Les météorites de très grande taille possèdent donc une énergie colossale à cause de leur vitesse qui, rappelons, peut peut atteindre jusqu’à 70 km par seconde. Au moment de leur chute, elles dissipent instantanément cette énergie, provoquant une gigantesque explosion qui volatilise la météorite, et forme un cratère. Une partie des roches est volatilisée ou pulvérisée, alors que d'autres parties sont partiellement fondues et disloquées. Les très nombreux cratères qu'on observe sur la Lune, sur Mercure ainsi que sur la plupart des astres du système solaire ont été causés par des météorites. La Terre a été également affectée par le bombardement de météorites, mais peu de cratères ont été conservés, car, très rapidement, ils sont effacés par l'érosion. Seuls ceux qui se sont formés ré- cemment sont encore visibles. Le plus connu d'entre eux est le Meteor Crater en Arizona. Il a été provoqué par la chute d'une météorite géante il y a environ 50’000 ans. Le poids de cette météorite a été estimé à 100’000 tonnes et son diamètre à 25 mètres. Les météorites, messagères de l'espace 9 Meteor Crater, Arizona ∅ 1200 m. Tenoumer, Mauritanie, ∅ 1800 m. La vitesse d'arrivée au sol a été estimée à 15 kilomètres par seconde. L'énorme énergie dissipée au moment de l'impact a été l'équivalent de 2 mégatonnes de TNT, soit 150 fois la puissance de la bombe atomique d'Hiroshima. Sous l'effet du choc, la météorite a explosé et s'est volatilisée. Seuls des fragments arrachés au corps principal au moment de l'entrée dans l'atmosphère ont été suffisamment ralentis pour ne pas exploser. On en a récolté une trentaine de tonnes aux alentours du cratère, le plus gros d'entre eux atteignant 639 kg. Il s'agit d'une météorite métallique qui a été baptisée "Cañon-Diablo", du nom d'une rivière proche du cratère. Cratère de Manicouagang Canada, D’un diamètre de 80 km, il s’est formé il y a 214 millions d’années. Les spécialistes estiment qu’il a été provoqué par la chute d’une météorite de 5 km de diamètre. Jacques Deferne 10 Existe-t-il un danger de recevoir une météorite ? On estime à 500 le nombre de météorites de taille notable qui tombent chaque année sur la terre. La surface de notre planète étant d'environ 500 millions de km2, la probabilité qu'une ville de 250’000 habitants (surf. ≈10 km2) reçoive une météorite est de une fois tous les 100’000 ans. Pour une maison particulière de 200 m2, un tel événement ne se produirait qu'une fois tous les 5 milliards d'années. Quant à un homme de 0.5 m2, cette probabilité n'est que d'une fois pour 2000 milliards d'années environ ! Toutefois, avec une population de 7 milliards d'habitants, la probabilité qu'un habitant de la Terre soit frappé par une météorite est tout de même d'une fois tous les quatre siècles ! Une chute bien étudiée : la météorite de Sikhote-Alin Le 12 février 1947, un météore dont la brillance surpassait celle du soleil traversait le ciel de la Sibérie orientale, laissant derrière lui une traînée de fumée visible encore plusieurs heures après son passage. Le phénomène lumineux ainsi que le grondement qui l'accompagnait furent perçus dans un rayon de plus de 300 kilomètres. A 10 h. 38, la météorite qui était la cause de ce phénomène se fragmente à environ 6 km d'altitude et ses débris s'écrasent aux alentours de Sikhote-Alin, formant de nombreux cratères dont le plus grand atteignait 26 mètres de diamètre. Près de 23 tonnes de fragments ont été récoltés dont le plus gros atteignait 1745 kg. Il s'agit d'une météorite métallique composée de fer avec environ 6 % de nickel. Les nombreux témoignages recueillis ainsi que les diverses photographies qui ont été prises, ont permis aux scientifiques d'affirmer : 1. que la météorite devait peser près de 1000 tonnes avant son entrée dans l'atmosphère, 2. qu'elle a abordé l'atmosphère à une vitesse de 14.5 km par seconde avec un angle d'incidence de 41°, 3. qu'elle possédait une orbite extra-terrestre correspondant à celles qui caractérisent les objets appartenant à la ceinture des astéroïdes. Sikhote-Alin, Sibérie, tombée le 12 février 1947 Les météorites, messagères de l'espace 11 Une chute historique : la météorite d'Ensisheim Discrète dans la plaine d'Alsace, la petite bourgade d'Ensisheim coule des jours paisibles à midistance entre Bâle et Colmar, un peu à l'écart du trafic autoroutier. Il y a un peu plus de cinq cents ans, en 1492, alors qu'à des milliers de kilomètres de là, Christophe Colomb foulait depuis quelques jours les rivages de l'Amérique, un événement extraordinaire et incompréhensible secouait la torpeur des habitants d'Ensisheim. Le 7 novembre, entre 11 heures et midi, un vacarme intense ressemblant à un immense coup de tonnerre fit sursauter tous les habitants de la région et une grosse pierre (env. 127 kg) s'abattit dans un champs de blé au voisinage de la bourgade. Les circonstances de la chute sont bien connues grâce à de nombreux témoignages qui ont été fort heureusement conservés jusqu'à aujourd'hui. Les chroniques nous apprennent même que le grondement dû au passage de la météorite avait sérieusement alerté les habitants de la ville de Lucerne, et que dans beaucoup d'autres endroits le fracas avait été si important qu'on avait cru que des maisons avaient été renversées. Elles rapportent aussi que le roi Maximilien, de passage à Ensisheim le lundi 26 novembre, se fit apporter la pierre à son château, en prit deux morceaux dont il en garda un et fit envoyer l'autre au Duc Sigismond d'Autriche. Enfin il ordonna aux gens d'Ensisheim de la suspendre dans l'église et défendit qu'on en prélevât d'autres fragments. La météorite a été parfaitement conservée et on peut la voir aujourd'hui au musée d'Ensisheim. Il s'agit d'une chondrite composée essentiellement d'olivine et de pyroxènes, minéraux ferro-magnésiens qu'on trouve aussi en abondance dans les roches terrestres. C'est la plus ancienne météorite conservée en Europe. Enluminure tirée des Chroniques lucernoises de Diebold Schilling, relatant la chute de la météorite d’Ensisheim. Les tectites Ce sont des fragments de verre fondu ressemblant à de l'obsidienne, distribués en vastes essaims dans diverses régions de notre planète. Certains savants pensent que les tectites sont constituées de matériel terrestre vitrifié par l'impact d'une météorite géante et projeté - comme des "giclures"- à des centaines de kilomètres de leur point de départ. Météorite d’Ensisheim dans sa vitrine à l’Hôtel de Ville Jacques Deferne 12 Les formes particulières qui les caractérisent, larmes, boutons, poires, ainsi que les cupules qui recouvrent leur surface sont dues à l'échauffement qu'elles ont subi en traversant l'atmosphère à très haute vitesse. Elles portent des noms qui indiquent la région où elles ont été récoltées: moldavites, indochinites, ivoirites, australites, bédiasites... Les quatre champs de tectites connus sont différents par l'étendue de leur aire de répartition et par l'âge de leur chute. Pour deux d'entre eux le cratère d'origine a pu être identifié. Le cratère du Ries, près de Nordlingen, en Allemagne, est à l'origine des moldavites de Bohème et de Moldavie, le cratère de Bosumtwi, au Ghana, serait à l'origine des tectites qu'on trouve en Côte d'Ivoire. Indochinites Moldavite Les champs de tectites dans le monde Groupe Aire géographique Nom Epoque de la chute Age (m.a..) Australie Australie du Sud Indochine Malaisie Philippines Indonésie Australites Indochinites Pleistocène tardif 0.7 Afrique de l'Ouest Côte d'Ivoire Ivoirites Pléistocène 1.3 Europe Tchécoslovaquie Moldavites Miocène 15 Amérique du Nord Texas, Géorgie Bédiasites Oligocène 34 Les météorites, messagères de l'espace 13 Glossaire Aérolithe Ancien nom des météorites pierreuses. Astéroïdes La ceinture des Astéroïdes est constituée de centaines de milliers de fragments rocheux qui gravitent sur des ellipses excentriques dont la partie haute (apogée) se situe entre Mars et Jupiter. Les plus gros peuvent atteindre plusieurs centaines de km de diamètre. Ataxite Météorite métallique dépourvue de toute structure. Bolide Terme général qui décrit une météorite qui parvient au voisinage de la terre sans être volatilisée. Chondre Petites sphérules constituées de minéraux silicatés présentes dans les chondrites. Chondrite Météorite pierreuse renfermant des chondres. Cohenite Carbure de fer et de nickel (Fe,Ni)3C. Etoile filante Phénomène lumineux provoqué par des micrométéorites qui sont entièrement volatilisées en entrant dans l'atmosphère. Hexahédrite Météorite métallique pauvre en nickel, constituée de kamacite et ne présentant pas de figures de Widmanstätten. On aperçoit parfois les formes cubiques (hexaèdres) de la kamacite. Kamacite Fer à faible teneur en nickel, cristallisant dans le système cubique (structure centrée). Météore Ensemble des phénomènes lumineux et sonores qui résultent de l'entrée d'une météorite dans l'atmosphère. Météorite Fragment d'un corps céleste qui tombe sur la Terre. Octaédrite météorite métallique caractérisée par des exsolutions de lamelles de kamacite dans la taenite qui se disposent parallèlement aux faces d'un octaèdre. Olivine Silicate de fer et de magnésium (Mg,Fe)2SiO4. Pallasite Météorite constituée de parts à peu près égales de cristaux d'olivine noyés dans du ferro-nickel. Plagioclase Série de feldspaths calco-sodiques pouvant cristalliser en toutes proportions entre les termes extrêmes NaAlSi3O8 et CaAl2Si2O8. Protoplanète Planète hypothétique dans son stade de formation. Pyroxène Famille de silicates ferro-magnésiens, dont les représentants plus fréquents dans les météorites, sont l'enstatite, Mg2Si2O6, la bronzite (Mg,Fe)2Si2O6 et l'hypersthène (Fe,Mg)2Si2O6. Regmaglypts Dépressions concaves qui recouvrent les météorites métalliques, provoquées par les turbulences du frottement de l'air. Schreibersite Minéral qu'on trouve dans les météorites métalliques. C'est un phosphure de fer (Fe,Ni)3P. Sidérite Terme scientifique désignant les météorites métalliques. Sidérolite Ancien terme désignant les météorites mixtes. Taenite Fer à teneur élevée en nickel (Ni>25%), cristallisant dans le système cubique. Tectite Objets vitreux présentant des formes singulières, qu'on peut récolter dans diverses régions du globe et qui sont des sortes de "giclures" provoquées par la chute de météorites géantes. Troïlite Sulfure de fer (FeS) cristallisant dans le système hexagonal et présent dans les météorites métalliques. Widmanstätten Nom du savant qui a décrit le premier les structures lamellaires qui apparaissent dans beaucoup de météorites métalliques et auxquelles il a prêté son nom (figures de Widmanstätten).7>
Aucun commentaire:
Enregistrer un commentaire